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Abstra& Ihe eigenvalue problem for the Rabi and E @ e IahwTeller Hamiltonians in 
Bagmann's Hiltert space is a system of two fint-order differential equations for the two- 
component wavefnnctions for which entire solutions are sought. The concept of tke ge"l 
potential has been intrcduced in a previous paper together with a particular example. Here 
we mat a simpler potential N ( z )  which satisfies a second-order ordinw differential equation 
closely related to the differential equation of the coduent Hem functions. The component 
wavefunctions are linear in lk potential and ifs first derivative. The coefficients of N ( z )  and 
dN(z) /dz  are functions of I and the physical parameten which xe identical in all eigensfa(es. 
The relation to the previous example is fully discussed. 

1. Introduction 

The analytical theory of the Rabi and the E 8 E Jahn-Teller system was prompted by two 
algebraic discoveries: the Longuet Higgins et al (1958) recurrence relations can be solved 
exactly for the fictitious value j = -1/2 of the orbital angular momentum and the detuning 
S = -114 (Judd 1977) and for arbitrary angular momenta and detunings for isolated values 
of the interaction constant K between bosons and fermions (Judd 1979). The latter solutions 
are known as Juddian isolated exact solutions. 

In Bargmann (1961, 1962). his theory on a Hilbert space of analytical functions leads 
to a system of two ordinary differential equations for the component wavefunctions in the 
complex domain. The differential equations have two regular singular points. The first is 
at z = 0 with the exponents 0, - j  - 1. The second singular point is at z = h? with the 
exponents 0, U (where U is Judds (1977, 1979) baseline parameter). Finally, there is an 
irregular singularity at infinity. 

The Juddian isolated exact solutions are now easily classified an isolated exact solution 
is obtained for integer U and for those values of the interaction constant K for which the 
second singularity becomes apparent. It is no surprise that the component wavefunctions 
are terminating series of functions whose differential equations have singularities at infinity 
and z = 0, only with singular properties which are compatible with those of the component 
wavefunctions (Reik et al 1982, 1987). 

In this paper, we consider the general case where the second singularity is real ahd we 
adopt the following strategy: we construct a differential equation for a function N ( z )  whose 
main ingredient is a confluent Heun operator which has the same real singularities as the 
differential equations for the component wavefunctions, i.e. z = 0 (exponents 0, -j - l), 
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z = K’ (exponents 0, U + 1) and an irregular singularity at infinity. Furthermore, there is 
a term providing an additional singularity which is apparent for all values of the physical 
parameters. (The position of the apparent singularity depends on u.) By a suitable choice 
of the additional term, N ( z )  becomes a generalized potential in the following sense: both 
component wavefunctions which solve the original equations in Bargmann’s Hilbert space 
are linear forms in N ( z )  and its first derivative d N ( z ) / d z .  

The paper is organized as follows. In section 2, we collect some material from our 
previous publications: we give the differential equations for the component wavefunctions 
in Bargmann’s Hilbert space (z-domain) and in the r-domain (which is related to the Laplace 
transform) and introduce the concept of the generalized potential. The equations in the r -  
domain are particularly easy to work with and we solve them in section 3. In section 4 
and 5, we give the theory in the z-domain. Section 6 deals with a different choice of the 
generalized potential and the relation between the potentials. In section 7, we summarize 
the results and discuss their relation to work by O’Brien (1964) and Ham (1987) and some 
practical and mathematical aspects of the theory. 

H G Reik and G Worf 

2. The equations for the component wavefunctions. The generalized potential 

In this section. we study first a canonically transformed version of the standard E 8 E 
Jahn-Teller Hamiltonian in term of the configuration coordinates and momenta (O’Brien 
1964, Englman 1972 and, more recently, Eiermann and Wagner 1992). This version clearly 
shows the close relation with the Rabi system. The transformed Hamiltonian 

ff = U&)U(t )  +a;)a(-) + 1 + (1/2+ 28)o; + 2x[(U(t) + a;))%) + (a(-) + a&)u(-,l 

(2.1) 

describes two boson modes (+) and (-) interacting with a two-level system. The level 
separation is 1 + 48. The angular momenhlm 

(2.2) + 1 
J = a&)a(t) - a(-)a(-) + qoz 

is a constant of motion with the eigenfunction 

I$.)j+1/2 = [a&)li4(a(t)a(-))10)lt) + t  + [~&)l’tlf(a&)a~))lO)I .1) (2 .3  

for j = 0, 1.2.. . . . Here, uzl t) = I t), U,[ 4) = - 1  $), 10) is the vacuum state for both 
bosons q+)10) = “(-)IO) = 0 and ~(U&)U: - ) ) ,  f (u&)uz))  are power series in the product 
of the creation operators starting with power zero. Furthermore 

Jl@)j+1/2 = (i + 1/2)l$)jt1/2. (2.4) 

Equations (2.3) and (2.4) still make sense for negative integer j provided that the power 
series for 4 and f begin with the powers - j and - j - 1, respectively. 

’ In the eigenvalue problem 

Hl@)j+l/Z = W ) j + l / Z  = (U + 1/2 - 2K2)1@.)jt1/2 (2.5) 

we introduce Judd‘s baseline parameter U (Judd 1979) instead of A as the new eigenvalue. 
Furthermore, we apply Bargmann’s method (Bargmann 1961, 1962. Schweber 1967), i.e. 
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we map the creation operators onto two complex variables t and q by a&, -+ t. u p )  -+ q 
which entails a(+) + a/at,  a(-) + a/aq. The Hamiltonian, the angular momentum and 
the eigenfunctions are given by 

H = E a / a t  + va/aq + 1 + (i/z + ZS)U, + zK[(a/at + q)u(t) + (a/aq + t)~(-)i 
J = t a / a t  - qa/aq + (I/z)u, 

(2.6) 

(2.7) 

l@)j+I/Z = t’@(z)l t) + t j f l f ( z ) l J )  (2.8) 

where z = t .  q. In order to calculate the component wavefunctions @(z) and f (z) we insert 
(2.6) and (2.8) into (2.5) and collect the spin-up and spin-down components. We obtain the 
following system of ordinary first-order differential equations for @(z) and f (z )  

z d@(z)/dz - (u /2  - j / Z  - 1/2 - 6 - K’)@(z) + K[zdf(z)/dz + ( j  + 1 + z)f(z)l = 0 

(2.9) 

and 

K[d@(z)/dz + @(z)] + z d f (z)/dz - ( u / 2  - j / 2  - 1/2 + 6 - K’)~(z)  = 0. (2.10) 

The system (2.9) and (2.10) has two regular singular points at z = 0 and z = K’ and an 
irregular singular point at infinity. The exponents at the singular point z = 0 are 0 and 
- j - 1 and the difference between the exponents is integer. For j 2 0, we have 0 =- - j - 1. 
Therefore, the solution with the exponent - j - 1 contains logarithmic terms. On the other 
hand, the solution @(z), f(z), as a power series of positive powers (including zero), is 
regular at the origin. Conversely, for negative integers j, we have - j  - 1 2 0 and the 
solution with the exponent 0 is irregular. Equations (2.9) and (2.10) allow for the regular 
expansions in the vicinity of the origin which we had already anticipated. The regular 
singular point z = K* has the exponents 0 and U and since U is, in general, non-integer, the 
solution with the exponent 0 is regdar at z = K’. The requirement that the expansions of 
the regular solutions @(z), f(z) at the origin have an infinite radius of convergence, i.e. that 
@(z) and f(z) are entire functions, selects the eigenvalues U and, hence, the eigenvalues h 
of the Hamiltonian. (In this case, E’@(.$ . q) ,  tj+’f (6 . q )  are entire in 5 and q which is 
the original form of Bargmann’s quantization.) 

We turn now to the Rabi Hamiltonian 

H = u t a +  1/2+(1/2+26)u~++~(a++a)(o(+)+u(- ) ) .  (2.1 1) 

With the Bargmann mapping a+ -+ 6, U -+ d/dc, the Hamiltonian takes the form 

H = td/dg + 1/2 + (1/2 + U)o, + AK(~ + d/de)(u(+) +U(-)). (2.12) 

The eigenfunctions of (2.12) for a definite parity are given by 

I@) =4(z,S)I t )  +(1/&)5f(z,6)1.1). (2.13) 

Here, z = c2/2 and the component wavefunctions @ ( z ,  6) and f (z, 6) satisfy (2.9) and 
(2.10) for j = -1/2. 
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The eigenfunctions with the opposite parity have the form 

I*) = ( l / h t f ( z ,  -8 - 1/2)1 t) + w. -8 - 1/2)1J.) (2.14) 

and the component wavefunctions $(z, -6 - 1/2) and f(z, -6 - 1/2) satisfy (2.9) and 
(2.10) for j = -1/2 and 6 replaced by -6 - 1/2. 

The eigenvalues A or U in (2.5) are selected by the requirement that the component 
wavefunctions $(z, 6). f(z, 6) and $(z, -6 - 1/2), f (z ,  -6 - 1/2) are entire functions 
of 6 .  Therefore the eigenvalue problems of the E @ E Jahn-Teller and Rabi Hamiltonians 
are mathematically identical (save for different values of the .angularmomentum quantum 
number j). 

The importance of the fictitious case j = -l/2 as the limiting case in the E @ E 

Jahn-Teller system was first observed by Judd (1977) when analysing the structure of the 
Longuet-Higgins et a1 (1958) recurrence relation. An ingenious perturbation scheme based 
on this observation, in which the deviation of the angular momentum from the fictitious value 
is used as the expansion parameter, has been devised hy Barentzen (1979) and Barentzen 
et al (1981). Neither Judd nor Barentzen noticed the intimate relationship between the 
Jahn-Teller and Rabi systems since they restricted themselves to the detuning 6 = -1/4. 
In this case, the Rabi system reduces to the displaced harmonic oscillator where the states 
with positive and negative parity are degenerate. 

Having dealt with the physics of (2.9) and (2.10). we proceed to the solution of the 
equations. We Laplace transform (2.9) and (2.10) and denote the Laplace transforms of 
the component wavefunctions by $@), f(p). Since the Laplace transforms of d$(z)/dz, 
df(z)/dz depend on $(z  = 0) and f(z = 0). we have to distinguish between the cases 
j >, 0 and j .c 0; we restrict ourselves to the latter case. We obtain 

- p@(p)/dp - ( u / 2  - j / 2  + 1/2 - 6 - K')$(P) + d - 1 ~  + 11 df(p)/dp + j f (p ) )  = 0 
(2.15) 

and 

K ( P  + I)@(P) - pdf(p) /dp - (UP - j / z  + 1/2 + 6 - K ' ) ~ ( P )  = 0. 

We introduce two new dependent variables instead of $ ( p )  and f ( p )  

(2.16) 

$(P) = Pj-' eXP(K2/P)Xi(KZ/P) (2.17) 

f b) = Pj eXP(Kz/P)xz(K2/P) (2.18) 

and el i inate  the independent variable p in favour of r = K ~ / P .  We get the following 
system of first-order differential equations in the r-domain: 

r dX1 (r)/dr - (u /2  + j / Z  - 1/2 - 6 - K' - r ) X ,  (r) + K(K' + r )  dXz(r)/dr 

+ K(K' - j + r)Xz(r) = 0 (2.19) 

and 

~ ( 1 +  r/K2)Xl(r) + r dXz(r)/dr - (u/2+ j / 2  + 1/2 + 6 - K' - r)X&) = 0. 

We also use the h e a r  combination (2.19) - ~(2.20) = 0 

r dXl(r)/dr-(u/2+ j /2-  l /Z-6)Xl(r)+~3 dX~(r)/dr+(u/2- j /2+  1/2+6)~Xz(r) = 0 
(2.21) 

(2.20) 
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instead of (2.19). The system of equation in the r-domain has two irregular singular points 
at r = 0 and at infinity; however, solutions in power series are admitted (Ince 1956, p 417) 

n=O 
(2.22) 

which, for the eigenvalues U, are entire functions. The inversion of the Laplace transform 
gives the eigensolutions of (2.9) and (2.10). 

There are two methods of solution for (2.20) and (2.21). The first method treats (2.20) 
and (2.21) on the same footing. The power series (2.22) are inserted and the recurrence 
relations for the coefficients X") are solved simdtaneously. The eigensolutions together 
with the eigenvalues U are picked out either by matrix truncation (O'Brien 1971, O'Brien 
and Pooler 1979, O'Brien and Evangelou 1980, review by Pooler 1984) or by a continued 
fraction procedure (Swain 1972, 1973, Reik etal 1982, Risken 1984). 

The second strategy was invented by Reik (1993) and, henceforth, this paper is referred 
to as [I]. The method is modelled on the potential theory and treats (2.20) and (2.21) 
on a different footing: an ansatz is made for the components XI@), Xz(r) of a complex 
two-dimensional vector field in terms of a scalar field X(r), the generalized potential. 

(2.23) = [U + (,S + Tr) d/dr + ( - I J K ~  - J K ' ~ )  d2/dr2]X(r) 

and 

Xdr)  = [ y  + (x  + pr)  d/dr + (ur + Vr') dZ/dr21X(r). (2.24) 

Since X,(r),Xz(r) are entire functions in the eigenstates, X(r) is also entire. The 
coefficients a, ,S, {, y ,  x ,  p, v ,J  are adjustable. We insert (2.23) and (2.24) into (2.21). 
The resulting second-order differential equation is satisfied by any entire function X(r), 
provided we dispose of the coefficients (see Reik (1993) (hereafter referred to as [I]), 
equations (4.11)-(4.16)). Insertion of (2.23) and (2.24) [I; (4.11)-(4.16)] into (2.20) gives 
a third-order differential equation by which X(r) is actually determined. The ansatz (2.23) 
and (2.24) has the advantage that, once X(r) is entire, each term on the right-hand side is 
manifestly entire. 

We do, however, feel that (2.23) and (2.24) is not the most basic ansatz (in particular, 
when we look into the consequences in the z-domain [I; sections 5-71). A theory which is 
modelled on the potential theory should allow for vector components XI (r), X&) which 
are of first order in the generalized potential and, as a consequence, for a second-order 
differential equation for the potential. We have found a new ansatz which satisfies these 
requirements. In the next three sections we shall use this ansatz for the solution of (2.20) 
and (2.21) in the r-domain and (2.9) and (2.10) in the z-domain. 

3. Solution in the r-domain 

In this section, we solve the differential equations (2.20) and (2.21) with the new ansatz 
for the components XI (r), X2(r) of a two-dimensional complex vector field in terms of a 
potential field M ( r )  

= - ~ ~ ( r  - ro)-'[dM(r)/dr - (p/ro)M(r)] (3.1) 

and 

Xz(r) = (r - r$'[rdM(i-)/dr - p M ( r ) ] .  (3.2) 
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The parameters ro, p will presently be determined as functions of K, j ,  6 and the eigenvalue 
U. Since the entire solutions XI@), Xz(r) of (2.20) and (2.21) are sought, M(r) must be 
entire and, in addition, the function ro dM(r)/dr -pM(r) must have a simple zero at r = ro. 
Equation (3.1) can be rewritten as 

H G Reik and G Wolf 

rXI (r) +x3x2(r) = ~ ~ ( p / r o ) ~ ( r )  

roXl(r) 4. ~ ~ X z ( r )  = ~’dM(r) /dr .  

(3.3) 

and 

(3.4) 

In (2.21), we express r d X l ( r ) / d r + ~ ~  dXz(r)/dr by (3.3) and the component wavefunctions 
XI@), Xdr)  by (3.1) and (3.2). We obtain a differential equation of first order for M(r) 

[K’(u/~ + j / 2  -!- 112 - 6 - p )  + r(K’p/ro + u/2 - j / 2  + 112 + A)] dM(r)/dr 

- p[(~’/rO)(u/2 + j / 2  + 112 - 6 )  + u/2 - j / 2  + 112 + 6 1 ~ ( r )  = 0. 

(3.5) 

This equation is satisfied by all entire functions MO), provided we put 

p = u/2+ j / 2 +  1/2- 6 

ro = - K ’ ( v / ~  + j/2 + 112 - s ) / ( u / ~  - j / 2  + 112 + 8) 

(3.6) 

and 

(3.7) 

in aN eigenstates. We shall, however, continue to use p and ro in subsequent equations as 
abbreviations for the right-hand side of (3.6) and (3.7). 

Next we derive the equation by which M(r) and the eigenvalue U are actually 
determined. We insert (3.1) and (3.2) into (2.20) and obtain a second-order differential 
equation for the potential MO). Define a special double-confluent Heun operator 
[DCH]j+l,,+1 (Schmidt and Wolf 1994) 

[DCH]j+l..+l = r2d2/dr2 + (-K‘ - [ j  + U + I]r + r2)(d/dr) 

+ (vi2 + j / Z  + 1/2 - 6)(u/2 + j / 2  + 312 + 6) - K’(U + 1) - r(u + 1). 

(3.8) 

Then we have 

SM(r) = (r - r~)[DCH]j+l.~++lM(r) - ro[rdM(r)/dr - pM(r)l = 0 (3.94 

(3.9b) 

The differential equation (3.9a.b) has irregular singularities at r = 0 and at infinity which 
are due to the double-confluent Heun operator in the first term of (3.90,b) and an apparent 
singularity at r = ro with the exponents 0 and 2 from the second term Once 1956. p 406). 
The solution with the exponent 0 does not contain logarithmic terms. Therefore, both 
partners of the fundamental system in the vicinity of ro are analytical functions. As a 
consequence, it is seen that the function ro dM(r)/dr + p M  has a simple zero at r = ro as 
required. In the vicinity of the origin, the physical solution is a power series which, for the 

= (r - ro)([DCH‘Jj+I,u+1M(r) - ro dWr)/dr) - ro[rodM(r)/dr - PMWI = 0. 
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eigenvalues U, defines an entire function. The comparison of (3.946) and (3.1) and (3.2) 
shows that the component wavefunctions Xl(r), Xz(r) can also be written as 

X z O )  = (l/ro)IDcHlj+i..+~M(r) (3.10) 

rOX10) = -~~((l/ro)[DCHlj+i..+iM(r) - dMO)/W (3.11a) 

and 

rXI(r)  = -(K3/ro)([DCH]j+i..+iM(r) - P M ( r ) ) .  (3.11b) 

To check the consistency of (3.10). (3.11) and (3.1). (3.2). insert (3.10), (3.11). (3.6) and 
(3.7) into (2.21). Then, equations (3.9ab) are reobtained. If (3.10), (3.11). (3.6) and (3.7) 
are inserted into (2.20), we get a differential equation of thud order 

TM(r) = (ror(d/dr) + ror - ro[u/2 + j / 2  + 3/2+ 61 - ~ ~ ) s M ( r )  = 0 (3.12) 

which is satisfied by all solutions of the second-order differential equations (3.9ab) 
S M ( r )  = 0 (Ince 1956, p 127). 

We can, of course, also start by considering (3.10) and (3.11) as an ansatz for the 
component wavefunctions in terms of an entire potential where p and ro are adjustable 
parameters. Insertion of (3.10) and (3.1 1) into (2.20) and (2.21) gives a differential equation 
of second order and a differential equation of third order for M ( r ) .  These differential 
equations do not contradict each other f we dispose of p and ro by (3.6) and (3.7). Under 
these conditions, equations (3.94b) and (3.12) are reobtained. 

Having dealt with the component wavefunctions X,(r), X z ( r )  and the potential M ( r )  
in the r-domain, we now turn to the solutions d(z) and Kf (z) of equations (2.9) and (2.10) 
in the z-domain. 

4. The component wavefunctions in the r-domain. First point of view 

Once we have found the entire solutions M(r) of (3.946) and the eigenvalues v in the 
eigenstates of the Hamiltonian, we also know the component wavefunctions Kf (z) and 
d(z) in the z-domain. We calculate the potential N(z) whose Laplace transform N ( p )  is 
related to M(r) by 

N ( p )  = K4pi eXp(K2/p)hf(K2/p) .  (4.1) 

Furthermore, define a special confluent Heun operator [CHI (Slavyanov 1994) 

[CHI = z(z - K2)(dZ/dz2) + [G + 2)(z - K') - (U + l)zl(d/dz) 

- K'(Z - K') + (U/Z - j/2)' - (1/2 + 6)' - K*(U  + 1). (4.2) 

Kf(z) = (1/K3ro)[cH1N(z) (4.3) 

d(z) = - ( I /K~~~)( [CHIN(Z)  - ( v / 2  + j / 2  + 1/2 - 6 ~ z ) )  (4.4) 

K ~ ( z )  t $ ( z )  = (1/~'rO)(u/2 t j / Z  t 1/2 - 6)N(z ) .  

Then the component wavefunctions Kf ( z )  and g(z) are given by 

and 

(4.5) 
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To prove (4.3), we Laplace bansform the equation 
K f ( P )  = (1/~'ro)(p~(d~/dp') 4- [ K z P z  + P(-j + U + 3) + ~'l(d/dp) 

- j + U + 1 + K ~ +  A - jpr2}N(p) (4.6) 

(4.7) 

where 
A = (u/2 - j/2)'- (1/2+6)* - K'(U + 1) 

and insert (4.1) and (2.18). Finally, we replace p by K 2 / r  and obtain (3.10) which proves 
(4.3). Equation (4.4) is proved using the same technique. 

In this section, we have obtained the solution of (2.9) and (2.10) in the z-domain using 
results from the r-domain. In the next seetion, we derive the same results without reference 
to the r-domain. 

5. Solution in the e-domaia Second point of view 

In this section, we give a direct calculation for the two components $ ( z )  and K ~ ( z )  of the 
complex vector field in terms of the potential N(z) .  We find, by the same method as in 
section 3, 

$(z) = ( ~ / K ~ ~ o ) ( z  - z~)-'kdN(z)/dz + (z + j + 1)N(z)l (5.1) 
and 
K ~ ( z )  = ( p / ~ ~ r ~ ) ( z  - zo)-'[-z dN(z)/dz + (u/2 - j/2 - 1/2 - 6 - K ' ) N ( Z ) ] .  (5.2) 
The functions in the square brackets of (5.1) and (5.2) must have simple zeros at z = a. 
This requirement entails 

20 = -U/2- j/2- 1/2+6 + K Z  = K 2  - p 

Kf(Z) + '2%) = @/K3ro)N(Z) 

(5.3) 

(5.4) 
in accordance with (4.5). All functions $(z)  and K ~ ( z ) ,  defined by (5.1) and (5.2), solve 
(2.9). We insert (5.1) and (5.2) into (2.10), multiply the equation by ( z  - Z O ) ~  and get a 
second-order differential equation for N ( z )  
U N ( z )  = ( z  - zo)[CHlN(z) + pIz dN(z)/dz - (u/2 - j/2 - 1/2 - S - K')N(z)] (5.5~) 

= ( z  - zo){[CH]N(z) - p N ( z ) t  + p[zdN(z)/dz + (z + j + 1)N(z)1 = 0 (534 
with the [CHI defined as in (4.2). The differential equation (5.5~4 has regular singularities 
at z = 0 (exponents 0, - j - 1) and z = K~ (exponents 0, U + 1) and an irregular singularity 
at infinity. The exponents of the potential N ( z )  close to the regular singular points are 
in agreement with the exponents of the component wavefunctions K ~ ( z )  and $(z ) .  On 
account of the second term in (5.5a,b), there is an apparent singularity at z = zo with the 
exponents 0.2. The solution with the exponent 0 does not contain logarithmic terms once 
1956, p 406). Therefore, all solutions of (5.5a,b) are holomorphic in the vicinity of a. 
Furlhemore, (5.5a,b), (5.1) and (5.2) show that the component wavefunctions can also be 
written as 

K f k )  = (1/K3ro)[cH]N(Z) (5.6) 

and. hence, 

(5.7) 
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6. Comparison with the previow treatment 

We come back to the theory given in m and to equations (2.23) and (2.24) for the component 
wavefunctions X1(r), Xz(r) in terms of the potential X(r). If care is taken of [I; (4.11)- 
(4.16)], these equations can be written as 

Xz(r) = [ ( w  +Vro)p@ - I)/ro + {-wp + [wp/ro + ZV(p - l)]r)d/dr 

+ (ur +Vrz)dz/dr2JX(r) = LZX(r) (6.2) 

with p and ro given by (3.6) and (3.7). 
Now we can factorize the operators L1 and L2 

LI = -fc3(r - ro)-'[d/dr - p/ro]L, 

Lz = (r - ro)-l[r d/dr - pJL,  
(6.31 

with 

L, = (r - ro)[(w + i k )  d/dr - up/ro - (U + ik)/(r - ro) - T(p - 1)l. (6.4) 

The proof is by inspection. L, depends linearly on ( w ,  F). The component wavefunctions 
in (3.1), (3.2) and (6.1), (6.2) are the same. The comparison yields the relation between 
M(r) and X ( r )  

M(r) = L,X(r) (6.5) 

where only X depends on (w .  7). 
Next we rederive the results of [a in the z-domain. In order to shorten the calculations, 

we restrict ourselves to the case w = 0 for the rest of this section. The Laplace transform 
of the potential D(z )  corresponding to X(r) is given by [I; (5.7b)l 

D ( p )  = K4Pi-' eXp(K'/p)X(K'/p). (6.6) 

We insert (6.6) into (6.5) and use (6.4) for w = 0. The resulting equation for M ( K ' / ~ )  is 
put into (4.1). We get 

N ( p )  = J{[r0p3 - ~'p'l d/dp + I - K ~  + pK'(ro - p + j - 2) + p'rdp - j + 1)11D(p) 

(6.7) 

and, &er inversion, 

N(z) = HD(z) 

(6.8) 
- = w ( - ~ ~ + ~ ' [ r o - p t  j]d/dz 

+ [ro@ - j - 2) + ~'z]d'/dz' - roz d3/d3z)D(z). 
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Insertion of (6.8) into (4.5) gives 

K ~ ( z )  + +(z) = ( i / ~ ~ r ~ ) ( v / 2  + j/2 i- 1/2 - S ) N ( Z )  

H G Reik and G Wolf 

= ( ~ / K ~ ~ ~ ) P N ( Z )  

= @ p / ~ ~ r o ) ( - ~ ~  t K2[ro - p + jJd/dz 

+ [r& - j - 2) + K'Z] d2/dz2 - roz d3/dz3}D(z) 

in agreement with [I; (S.lO)(u = O)]. Equations (5.1) (5.2) and (6.8) show that 

$(z )  = K i W )  (6.10a) 

K1 = W/K~~O)(Z - zo)-'(z d/dz + z + j + l )H (6.10b) 

and 

K f ( Z )  = KzD(z) (6.114 

Kz = J ( p / ~ ~ r ~ ) ( z  - zo)-I(-z d/dz + v/2 - j/2 - 112 - S - K*)H (6.11b) 

where the operators K I ,  Kz are already factorized. Multiplying out the right-hand sides of 
(6.10b) and (6.11b), we obtain 

Ki TK{-(/J/ro 4- 1) f [ - p @  - j -k 1) t 2(j 4- l)]K-'d/& 

f [ ( j  + I)(p - j - 2) -k @ / r o  4- 2)K2Z]K-4d2/dZ2 

+ [p - 2j -4]KZzK-6d3/dZ3 - K 4 Z 2 ~ - '  d4/dz4 t K 3 ( 2  - zo)-'Q 

(6.10~) 

K 2 = ? ~ { 1 + 2 [ p -  j - l ] ~ - ' d / d z + [ p ( p - l ) + ( j +  1 ) ~ + 2 - 2 p ) - 2 K 2 z ] ~ d d z / d ~ 2  

- 2 [ p  - j - 2]K2zK-6d3/dZ3 + K422K-8d4/dZ4) - K-3(2  - a)-' Q 

(6.1 IC) 

where Q is defined by [I; (&la), (6.2), (6.3)] and QD(z)  = 0 since +(z) and K ~ ( z )  are 
holomorphic in the vicinity of z = 20. By insertion of (6.10~) and (6.1 IC) into (6.10~) and 
(6.11~). equations [I; (5.8). (5.9)] are reproduced. 

7. Summary and discussion 

The results of this paper can be summarized as follows. The eigenvalue problem of the Rabi 
and the E @ &  Jahn-Teller Hamiltonian amounts to finding the entire solutions Xl(r). Xz(r )  
of (2.20) and (2.21) together with the eigenvalues A. The solutions to the problem are 
accomplished in two steps. 

(i) Consider the subspace of entire functions M ( r )  for which the expression 
ro(dM(r)/dr) - pM(r) with p and ro defined by (3.6) and (3.7) has a simple zero at 
r = ro. All functions in this subspace are called potentials. By (3.1) and (3.2), each 
potential generates a vector field with the components XI@), X,(r) which satisfy (2.21). 
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(ii) Equation (3 .94~)  selects those potentials whose associated vector fields X I  ( r ) ,  Xz ( r )  
also satisfy (2.20). The eigenvalues U are also determined. The procedure in the r-domain 
and in the z-domain exactly parallel each other. The theory given in [I] is also incorporated. 

We are now going to discuss the results but, for conciseness, we restrict ourselves to the 
r-domain. Equations (3.1) and (3.2) give the complete interdependence of the components 
Xl(r) ,  X z ( r )  if the wavefunctions are in all eigenstates. A relation between the component 
wavefunctions in the domain of the configuration coordinates has been found by O'Brien 
(1964) on plausible and intuitive grounds. Ham (1987) showed that this relation is a 
consequence of Berry's geometrical phase. (See also Chancey and O'Brien (1988) for an 
application to a different Jahn-Teller system.) We would like to look into this problem using 
the complete information which is now at our disposal and transforming our equations to 
the configuration coordinate domain. This program will be carried out in a forthcoming 
paper and might give a more detailed understanding of the work by O'Brien and Ham. 

In this paper, we have argued that the potential M ( r )  is more fundamental than X ( r ) .  
However, the recurrence relations for X ( r )  with v = 0 are easier to solve than for M ( r ) :  
the physical solutions of [I; (4.18). (4.19)] and of (3.94b) are power series 

M ( r )  = M.r" 
"=O 

and from (6.5) (v = 0), we have 

M, = (Kz)-i-lV[(n - 1 - p)D,-l - ro(n + 1 - p)41. (7.3) 

Insertion of (7.1) in [I; (4.18), (4.19)] gives a three-term recurrence relation 

~ ~ + ~ ~ ~ ( n + l ) ~ [ n + 3 ] + ~ - ~ , [ n ( n -  j-u)+(u/~+j/~-1/~-6)(u/~+j/~+1/~+6)-~~ U] 

(7.4) x (T[n + lI+zi)- Dn-l(n - U -  l)(Tn+m = O  

and 

(7.5) 
- p = -V(p - 1)  

while the recurrence relation for M. is four term 

~ , + 1 ~ ~ r o ( n  + 1) - M,[rOn(n - j - U - 2) + ro(n - p )  + ro(u/2+ j /2+ 1/2 - 6) 
X (U/2 + j/2 + 3/2 + 6) - roK2(U f 1) f K 4 n ]  

+ M n - ~ [ - r & - u - 2 ) + ( n - l ) ( n -  j - u - 3 ) + ( ~ / 2 +  j/Z+1/2-6) 

x (u/2 + j/2+ 3/2 + 6) - K'(U + 1 ) l -  M.-z(n - U - 3) = 0. (7.6) 

It is therefore expedient to solve (7.4) for the eigenvalue and for Dn and calculate M. by 
(7.3). For integer U. the recurrence relations allow for polynomial solutions of M ( r )  and 
X ( r )  which upon insertion into (3.1), (3.2) and (2.23), (2.24) give the Juddian isolated exact 
solutions for the component wavefunction (Judd 1979). In the general case, we have for the 
coefficients of the physical solutions the limit behaviour limM,+~/M,, = LimDn+l/D,, % 
-n-l 
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The double-confluent Heun equation 

[DCH]j, .M(r) = 0 M ( r )  = M,r" 
n=O 

(7.7) 

with the recurrence relation 

M.+1x4(n+ 1) -M,[n(n-  j - u ) + ( u / Z +  j/2- 1/2-S)(u/2+ j / 2 + 1 / 2 + 6 ) - 1 c ~ u ]  

- M.-l(n - U - 1) = 0 (7.8) 

also allows for polynomial solutions for integer U (see also Schmidt and Wolf 1994, 
section 3). Furthermore, for the entire solutions of (7.7). in the general case, we have 
l imM.+~/M,  uy -n-I. We, therefore, believe that virtually the whole body of results for 
the doubleconfluent Heun equation, as given by Schmidt and Wolf (1994), can be taken 
over to the more general equations (3.9~) and (3.9b) with only minor quantitative changes. 
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